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Abstract

Free vibration of functionally graded material sandwich rectangular plates with simply supported and clamped edges is

studied based on the three-dimensional linear theory of elasticity. Two common types of FGM sandwich plates, namely,

the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core,

are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by

appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method.

Rapid convergence is observed in this study. The natural frequencies of simply supported power-law FGM sandwich plates

are compared with results from different two-dimensional plate theories. Parametric study is performed for varying volume

fraction, layer thickness ratios, thickness–length ratios and aspect ratios of the sandwich plates.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are a new generation of engineered materials first introduced by a
group of Japanese scientists in 1984 [1,2]. The original purpose of FGMs was the development of super-
resistant materials for propulsion systems and airframe of the space planes in decreasing thermal stresses and
increasing the effect of protection from heat. The Japanese scientists mixed the ceramic and metal powders
into a graded profile to manufacture these novel materials. The engineering ceramic can resist the severe
thermal loading from the high-temperature environment; the metal is served to decrease the large tensile stress
occurring on the ceramic surface at the earlier stage of cooling. Moreover, due to the special manufacturing
process, these novel materials are macroscopically homogeneous in spite of microscopically inhomogeneous.
The composition and structure of FGMs continuously and gradually varying over volume results in
continuous and gradual changes in the properties of the material. This advantage eliminates interface
problems of composite materials and thus the stress distribution becomes smooth. Used as coatings and
interfacial zones, they can help to reduce mechanically and thermally induced stresses caused by the material
property mismatch and to improve the bonding strength.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Because of the wide application of FGMs, many studies have been performed to analyze the behavior
and to understand the mechanics and mechanism of FGM structures. Extensive studies had been carried
out, both theoretically and experimentally, on fracture mechanics [3,4], thermal stress distribution [5a,5b,6],
processing [7,8], and so on. Among these FGM structures, the plates and shells are still the interests for
researchers because of their applications. Approaches such as using shear deformation plate theory,
energy method, and finite-element method were carried out. Reddy [9] presented the solutions of static
behavior for the FGM rectangular plates based on his third-order shear deformation plate theory.
Cheng and Batra [10] presented the results for the buckling and steady state vibrations of a simply sup-
ported FGM polygonal plate based on Reddy’s plate theory. Loy et al. [11] presented Rayleigh–Ritz
solutions for free vibration of simply supported cylindrical shells made of an FGM compound of stainless
steel and nickel by using Love’s shell theory. Praveen and Reddy [12] investigated the nonlinear static
and dynamic response of functionally graded ceramic-metal plates using a plate finite element that
accounts for the transverse shear strains, rotary inertia and moderately large rotations in the von Karman
sense.

There are also several studies about finding the three-dimensional exact solutions for FGM plates. Reddy
and Cheng [13] obtained a three-dimensional solution of a smart FGM plate consisting of a plate made of
FGM and actuators made of an active material by the combination of the transfer matrix formulation and
asymptotic expansion. Vel and Batra [14] presented a three-dimensional exact solution for free and forced
vibrations of simply supported FGM rectangular plates by using suitable displacement functions to reduce
equations governing steady state vibration of the plate.

The FGM sandwich can alleviate the large interfacial shear stress concentration because of the gradual
variation of material properties at the facesheet–core interface. The effects of FGM core were studied by
Venkataraman and Sankar [15], and Anderson [16] on the shear stresses at the facesheet–core of FGM
sandwich beam. Pan and Han [17] analyzed the static response of the multilayered rectangular plate
made of functionally graded, anisotropic, and linear magneto-electro-elastic materials. Das et al. [18] studied
a sandwich composed of a single FGM soft core with relatively orthotropic stiff facesheets by using a
triangular plate element. Shen [19] considered two types of FGM hybrid laminated plates, one is with
FGM core and piezoelectric ceramic facesheet and the other is with FGM facesheet and piezoelectric
ceramic core.

The FGM sandwich construction commonly exists in two types: FGM facesheet–homogeneous core and
homogeneous facesheet–FGM core. For the case of homogeneous core, the softcore is commonly employed
because of the light weight and high bending stiffness in the structural design. The homogeneous hardcore is
also employed in other fields such as control or in the thermal environments. The actuators and sensors which
are commonly piezoelectric ceramics, are always in the mid layers of the sandwich construction as in the paper
of Shen [19]. Moreover, in the thermal environments, the metal-rich facesheet can reduce the large tensile
stress on the surface at the early stage of cooling [20].

In general, the plates made of FGMs are not materially symmetric about the midplane for the special
material properties distribution. Their stretching and flexural deformation modes are coupled. This case can
be avoided for the multilayer FGM systems if the FGM constituent is positioned at the top and bottom layers.
Zenkour [21a,b] had presented a two-dimensional solution for bending, buckling, and free vibration analysis
of simply supported functionally graded ceramic-metal sandwich plates based on the sinusoidal shear
deformation plate theory.

In the present study, the three-dimensional free vibration of multi-layer FGM system–symmetric and
unsymmetric FGM sandwich plates are analyzed by Ritz method. Two common types of FGM sandwich
plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with
homogeneous facesheet and FGM core are considered. The three displacements of rectangular plates are
expanded by Chebyshev polynomial series multiplied by boundary functions [22,23]. The variation of material
properties through the thickness of the sandwich is expressed by employing one continuously sectional
function. The present approach is validated by the comparisons of other theories and methods. The
convergence study reveals the relationships between the convergence rate and volume fraction index k value,
material property distribution. The effects of k values, material property distributions, supported conditions,
thickness-side ratios and aspect ratios are also discussed in the parametric study.
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2. Problem formulation

2.1. Geometrical configuration

Consider the case of a uniform thickness, rectangular FGM sandwich plate composed of three microscopically
heterogeneous layers referring to a rectangular coordinates (x1, x2, x3) as shown in Fig. 1. The top and bottom
faces of the plate are at x3 ¼ �h=2, and the edges of the plate are parallel to axes x1 and x2. The corresponding
displacement components at generic points are u1, u2, and u3 in the x1, x2, and x3 directions, respectively.

For coding and derivational convenience, the non-dimensional parameters are introduced

x ¼
2x1

a
; Z ¼

2x2

b
; z ¼

2x3

h
, (1)

where x; Z; z 2 ½�1; 1�.
The sandwich plate are composed of three elastic layers, namely, ‘‘Layer 1’’, ‘‘Layer 2’’, and ‘‘Layer 3’’ from

bottom to top of the plate. The vertical ordinates of the bottom, the two interfaces, and the top are denoted by
h1 ¼ �h=2; h2; h3; h4 ¼ h=2, respectively. For the brevity, the ratio of the thickness of each layer from bottom
to top is denoted by the combination of three numbers, i.e. ‘‘1-0-1’’, ‘‘2-1-2’’ and so on. As shown in Fig. 2,
two types A and B are considered in the present study:
Fig

(b)
Type A: FGM facesheet and homogeneous core
Type B: Homogeneous facesheet and FGM core
2.2. Material properties

The properties of FGM vary continuously due to gradually changing the volume fraction of the constituent
materials, usually in the thickness direction only. Power-law function [24,25] are commonly used to describe
a

b

h
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Fig. 1. Geometry of rectangular FGM sandwich plate with uniform thickness in the rectangular Cartesian coordinates.
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these variations of materials properties. The sandwich structure made of two types of power-law FGMs
mentioned before are discussed as follows.

2.2.1. Type A: power-law FGM facesheet and homogeneous core

The volume fraction of the FGMs is assumed to obey a power-law function along the thickness direction:

gð1ÞðzÞ ¼
z� z1
z2 � z1

� �k

; z 2 ½z1; z2�, (2a)

gð2ÞðzÞ ¼ 1; z 2 ½z2; z3�, (2b)

gð3ÞðzÞ ¼
z� z4
z3 � z4

� �k

; z 2 ½z3; z4�, (2c)

where gðiÞ; ði ¼ 1; 2; 3Þ denotes the volume fraction function of layer i; zj ¼ 2hj=h; ðj ¼ 1; 2; 3; 4Þ; k is the volume
fraction index ð0pkpþ1Þ, which dictates the material variation profile through the thickness.

2.2.2. Type B: homogeneous facesheet and power-law FGM core

The volume fraction of the FGMs is assumed to obey a power-law function along the thickness direction:

gð1ÞðzÞ ¼ 0; z 2 ½z1; z2�, (3a)

gð2ÞðzÞ ¼
z� z2
z3 � z2

� �k

; z 2 ½z2; z3�, (3b)

gð3ÞðzÞ ¼ 1; z 2 ½z3; z4� (3c)

in which gðiÞ, zj and k are as same as defined in Eq. (2).
The effective material properties, like Young’s modulus E, Poisson’s ratio n, and mass density r, then can be

expressed by the rule of mixture [3] as

P
ðiÞ
eff ðzÞ ¼ P2 þ ðP1 �P2Þg

ðiÞðzÞ, (4)

whereP
ðiÞ
eff is the effective material property of FGM of layer i. For type A,P1 andP2 are the properties of the

top and bottom faces of layer 1, respectively, and vice versa for layer 3 depending on the volume fraction
gðiÞðzÞ; ði ¼ 1; 2; 3Þ; For type B, P1 and P2 are the properties of layer 3 and layer 1, respectively.

These two types of FGM sandwich plates will be discussed later in the following sections. For simplicity,
Poisson’s ratio of plate is assumed to be constant in this study for that the effect of Poisson’s ratio on the
deformation is much less than that of Young’s modulus [26].

3. Solution methodology

In the case of a plate undergoing free vibration, its periodic displacement components can be expressed in
terms of the displacement amplitude functions:

uiðx; Z; z; tÞ ¼ Uiðx; Z; zÞeiot ði ¼ 1; 2; 3Þ, (5)

where o denotes the natural frequency of the plate and i ¼
ffiffiffiffiffiffiffi
�1
p

. In the present approach, the mechanical
displacement amplitude functions U1ðx; Z; zÞ, U2ðx; Z; zÞ, and U3ðx; Z; zÞ in Eq. (5) are written in the form of the
triplicate series of Chebyshev polynomial:

U1ðx; Z; zÞ ¼ Ru1

X1
i¼1

X1
j¼1

X1
k¼1

AijkPiðxÞPjðZÞPkðzÞ,

U2ðx; Z; zÞ ¼ Ru2

X1
l¼1

X1
m¼1

X1
n¼1

BlmnPlðxÞPmðZÞPnðzÞ,
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U3ðx; Z; zÞ ¼ Ru3

X1
p¼1

X1
q¼1

X1
r¼1

CpqrPpðxÞPqðZÞPrðzÞ, (6)

in which Rd; ðd ¼ u1; u2; u3Þ are R-functions [28] to satisfy the essential boundary conditions along the edges;
Aijk, Blmn, and Cpqr are the unknown coefficients to be determined; Pi, ði ¼ 1; 2; 3; . . .Þ is the one-dimensional
ith Chebyshev polynomial [27] (refer to Appendix A):

PiðxÞ ¼ cos½ði � 1Þ arccosðxÞ�. (7)

Chebyshev polynomials PiðxÞ are a set of complete and orthogonal function in the interval ½�1; 1�. In Zhou’s
analysis of plates [22,23], these polynomials showed some advantages such as high convergence rate and
stability. In the present approach, the three displacement components of the plates are expanded by the
triplicate series of Chebyshev polynomials multiplied by the boundary functions. The thickness expansion in
Chebyshev polynomials resembles the kinematical assumption of displacements in the thickness coordinate
in the two-dimensional plate theories which include classical plate theory (CPT), first-order shear deformation
plate theory (FSDT), third-order shear deformation plate theory (TSDT) and sinusoidal shear deformation
plate theory (SSDT) as shown in Table 1.

For Ritz method, the natural boundary conditions for simply supported and clamped plates considered in
the present study are

u2 ¼ u3 ¼ 0; at x1 ¼ �a=2

u1 ¼ u3 ¼ 0; at x2 ¼ �b=2
for simply supported condition; (8a)

u1 ¼ u2 ¼ u3 ¼ 0; at x1 ¼ �a=2

u1 ¼ u2 ¼ u3 ¼ 0; at x2 ¼ �b=2
for clamped condition. (8b)

The corresponding R-functions of these two boundary conditions are tabulated in Table 2.
The Hamilton’s principle has the form

d
Z t1

t0

Ldt ¼ d
Z t1

t0

ðT �U þW Þdt ¼ 0, (9)

where L ¼ T �U þW is the Lagrangian function; T is the total kinetic energy; U is the strain energy; W is the
work done by the external forces. In the case of free vibration, the principle Eq. (9) is reduced by setting the
virtual work W zero. The kinetic energy in the present case is

T ¼

Z
V

1

2
rðzÞ

qu1

qt

� �2

þ
qu2

qt

� �2

þ
qu3

qt

� �2
" #

dV , (10)
Table 1

Kinematical assumptions of different plate theories

Theories Assumption of three-dimensional displacements ui; i ¼ 1; 2 and u3

CPT
uiðx1;x2; x3; tÞ ¼ ūiðx1; x2; tÞ � x3

qw

qxi

,

u3ðx1; x2;x3; tÞ ¼ wðx1;x2; tÞ
FSDT uiðx1;x2; x3; tÞ ¼ ūiðx1; x2; tÞ þ x3fxi

ðx1;x2; tÞ,

u3ðx1; x2;x3; tÞ ¼ wðx1;x2; tÞ
TSDT

uiðx1;x2; x3; tÞ ¼ ūiðx1; x2; tÞ þ x3fxi
ðx1;x2; tÞ �

4x3
3

3h2
fxi
þ

qw

qxi

� �
,

u3ðx1; x2;x3; tÞ ¼ wðx1;x2; tÞ
SSDT

uiðx1;x2; x3; tÞ ¼ ūiðx1; x2; tÞ � x3
qw

qxi

þ
h

p
sin

px3

h

� �
fxi
ðx1;x2; tÞ

u3ðx1; x2;x3; tÞ ¼ wðx1;x2; tÞ
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Table 2

Boundary R-functions for different boundary conditions

BC R-functions

Simply supported Ru1 ¼ 1� Z2, Ru2 ¼ 1� x2, Ru3 ¼ ð1� x2Þð1� Z2Þ
Clamped Ru1 ¼ Ru2 ¼ Ru3 ¼ ð1� x2Þð1� Z2Þ

Q. Li et al. / Journal of Sound and Vibration 311 (2008) 498–515 503
where rðzÞ is the effective thickness-graded mass density defined by Eq. (4). The linear elastic strain energy U is
written in integral form as

U ¼

Z
V

EðzÞ
2ð1þ nÞ

n
1� 2n

U21 þ U2 þ
U3
2

� �
dV , (11)

where EðzÞ is the effective thickness-graded Young’s modulus defined by Eq. (4) and

U1 ¼
qu1

qx1
þ

qu2

qx2
þ

qu3

qx3
; U2 ¼

qu1

qx1

� �2

þ
qu2

qx2

� �2

þ
qu3

qx3

� �2

,

U3 ¼
qu1

qx2
þ

qu2

qx1

� �2

þ
qu2

qx3
þ

qu3

qx2

� �2

þ
qu1

qx3
þ

qu3

qx1

� �2

. (12)

By Ritz method, the variation of Lagrangian function L should equal zero under the integration with
respect to time carried out between fixed initial and final instants of time t0 and t1. The Lagrangian function L

is a homogeneous quadratic function of Chebyshev polynomial series coefficients. Its partial differential with
respect to coefficients Aijk, Blmn, and Cpqr

qL

qAijk

¼ 0;
qL

qBlmn

¼ 0;
qL

qCpqr

¼ 0 ði; j; k; l;m; n; p; q; r ¼ 1; 2; 3; . . .Þ (13)

leads to the governing eigenvalue matrix:

K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

2
64

3
75� o2

M11 0 0

0 M22 0

0 0 M33

2
64

3
75

0
B@

1
CA

A

B

C

8><
>:

9>=
>; ¼ 0, (14)

where A, B, and C are the column vectors containing unknown coefficients, Aijk, Blmn, and Cpqr, respectively.
The explicit forms of the respective elements in the nominal stiffness matrix K and mass matrix M are listed in
Appendix B.
4. Numerical results

4.1. Convergence and efficiency study

Theoretically, the Ritz method can provide accurate solutions. The accuracy and efficiency of solutions
depend greatly on the choice of displacement components amplitude functions Ui. The natural frequencies
obtained in the present approach start with an initial value and converge. These initial estimates can be
improved by increasing the number of terms of admissible functions in the computation. In fact, the
convergence rate is very high and is independent of the volume fraction indices k values [29]. In the present
study, the square power-law FGM sandwich plates with four simply supported and clamped edges are taken
as examples for the convergence study.

Considering an FGM plate of Type A as shown in Fig. 2(a), the Young’s modulus and mass density
of layer 1 are Ec ¼ 380GPa and rc ¼ 3800 kg=m3 (P1, alumina) at the top face and Em ¼ 70GPa and
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rm ¼ 2707 kg=m3 (P2, aluminum) at the bottom face. And the Young’s modulus and mass density between
these two faces vary according to the power-law. Poisson’s ratio n is taken as 0.3 throughout the analyses.

For simplicity, the non-dimensional natural frequency parameter is defined as

ō ¼
ob2

h

ffiffiffiffiffiffi
r0
E0

r
, (15)

where r0 ¼ 1 kg=m3, E0 ¼ 1GPa.
Due to the symmetry of the plate and the boundary conditions, the vibrational modes can be classified into

symmetric modes and antisymmetric modes. These two modes can be determined separately and resulted in a
smaller set of eigenvalue equations while maintaining the same level of accuracy. For the completeness, the
expansions in x and Z directions consist of the complete set of series; whereas the expansions in z direction
consist of the antisymmetric terms only.

Tables 3 and 4 show the convergence of flexural vibration frequency parameter ō of square 2-1-2 power-law
FGM plates of Type A (FGM facesheet and homogeneous core) with volume fraction index k values
(k ¼ 1; 10) and two thickness ratios ðh=b ¼ 0:01; 0:1Þ. It can be seen that the frequencies converge with the
increase in the number of terms of admissible functions. This number of terms of admissible function is a
combination of the number of the thickness expansion terms and the number of the length and width sides
expansions terms, which depend on the thickness and boundary conditions, respectively. Tables 5 and 6 show
the convergence of square power-law FGM plate of Type B (homogeneous facesheet and FGM core), of
which the material distribution is chosen as 1-8-1 same with k ¼ 1; 10 and h=b ¼ 0:01; 0:1. They have the same
trend as the case of 2-1-2 power-law FGM plates of Type A. For both thickness-side ratios ðh=b ¼ 0:01; 0:1Þ,
two terms of thickness expansion are sufficient regardless of the boundary conditions (simply supported or
clamped) and the volume fraction index values (k ¼ 1; 10). And totally 10� 10� 2 terms can provide the
accurate enough solutions as compared with solutions of 12� 12� 3 or 12� 12� 4 terms.
Table 3

Convergence of flexural vibration frequency parameters ō of square 2-1-2 power-law FGM plates with k ¼ 1 ðh=b ¼ 0:01; 0:1Þ

h=b Terms ō1 ō2 ō3 ō4 ō5

0.01 Simply supported

10� 10� 1 1.47169 3.67778 3.67778 5.88214 7.35076

10� 10� 2 1.32974 3.32324 3.32324 5.31543 6.64283

11� 11� 1 1.47169 3.67778 3.67778 5.88214 7.35076

11� 11� 2 1.32974 3.32324 3.32324 5.31543 6.64283

12� 12� 3 1.32974 3.32324 3.32324 5.31543 6.64282

Clamped

10�10� 1 2.68146 5.46547 5.46547 8.05363 9.78950

10�10� 2 2.43753 4.96512 4.96512 7.31581 8.90241

10�10� 3 2.43752 4.96511 4.96511 7.31579 8.90238

11�11� 2 2.43347 4.96340 4.96340 7.31565 8.88625

12�12� 3 2.43342 4.95815 4.95815 7.30599 8.88603

0.1 Simply supported

10� 10� 1 1.43532 3.46523 3.46523 5.37039 6.58110

10� 10� 2 1.30186 3.15897 3.15897 4.91713 6.04132

10� 10� 3 1.30182 3.15875 3.15875 4.91660 6.04051

11� 11� 3 1.30182 3.15875 3.15875 4.91660 6.04051

12� 12� 4 1.30182 3.15875 3.15875 4.91659 6.04048

Clamped

10�10� 1 2.49612 4.83861 4.83861 6.84852 8.13006

10�10� 2 2.29302 4.47175 4.47175 6.35688 7.56849

10�10� 3 2.29260 4.47053 4.47053 6.35478 7.56564

11�11� 3 2.29108 4.46888 4.46888 6.35280 7.56182

12�12� 4 2.29049 4.46721 4.46721 6.35053 7.56005



ARTICLE IN PRESS

Table 4

Convergence of flexural vibration frequency parameters ō of square 2-1-2 power-law FGM plates with k ¼ 10 ðh=b ¼ 0:01; 0:1Þ

h=b Terms ō1 ō2 ō3 ō4 ō5

0.01 Simply supported

10�10� 1 1.06179 2.65359 2.65359 4.24435 5.30429

10�10� 2 0.95937 2.39777 2.39777 3.83540 4.79339

10�10� 3 0.95935 2.39763 2.39763 3.83505 4.79284

11�11� 2 0.95937 2.39777 2.39777 3.83540 4.79339

12�12� 3 0.95935 2.39763 2.39763 3.83505 4.79283

Clamped

10�10� 1 1.93484 3.94414 3.94414 5.81255 7.06575

10�10� 2 1.75883 3.58303 3.58303 5.27993 6.42541

10�10� 3 1.75867 3.58249 3.58249 5.27884 6.42384

11�11� 2 1.75589 3.58180 3.58180 5.27987 6.41367

12�12� 3 1.75571 3.57747 3.57747 5.27176 6.41203

0.1 Simply supported

10�10� 1 1.03968 2.52326 2.52326 3.92820 4.82671

10�10� 2 0.94283 2.29954 2.29954 3.59555 4.42964

10�10� 3 0.94078 2.28808 2.28808 3.56911 4.39095

11�11� 3 0.94078 2.28808 2.28808 3.56911 4.39095

12�12� 4 0.94044 2.28616 2.28616 3.56466 4.38441

Clamped

10�10� 1 1.82541 3.56617 3.56617 5.07402 6.04522

10�10� 2 1.67635 3.29431 3.29431 4.70829 5.62707

10�10� 3 1.66421 3.25798 3.25798 4.64478 5.54034

11�11� 3 1.66326 3.25650 3.25650 4.64271 5.53778

12�12� 4 1.66075 3.24938 3.24938 4.63070 5.52175

Table 5

Convergence of flexural vibration frequency parameters ō of square 1-8-1 power-law FGM plates of Type B with k ¼ 1, ðh=b ¼ 0:01; 0:1Þ

h=b Terms ō1 ō2 ō3 ō4 ō5

0.01 Simply supported

10� 10� 1 1.74429 4.35823 4.35823 6.96918 8.70817

10� 10� 2 1.57601 3.93789 3.93789 6.29722 7.86869

11� 11� 1 1.74429 4.35823 4.35823 6.96918 8.70817

11� 11� 2 1.57601 3.93789 3.93789 6.29722 7.86869

12� 12� 3 1.57601 3.93787 3.93787 6.29717 7.86861

Clamped

10�10� 1 3.17714 6.47370 6.47370 9.53637 11.59013

10�10� 2 2.88787 5.88032 5.88032 8.66126 10.53745

10�10� 3 2.88784 5.88025 5.88025 8.66110 10.53723

11�11� 2 2.88311 5.87820 5.87821 8.66082 10.51868

12�12� 3 2.88298 5.87200 5.87200 8.64946 10.51798

0.1 Simply supported

10� 10� 1 1.68255 4.00585 4.00585 6.13700 7.47037

10� 10� 2 1.52306 3.63486 3.63486 5.58000 6.80058

10� 10� 3 1.52276 3.63314 3.63314 5.57586 6.79435

11� 11� 3 1.52276 3.63314 3.63314 5.57586 6.79435

12� 12� 4 1.52208 3.62953 3.62953 5.56787 6.78289

Clamped

10�10� 1 2.86053 5.44192 5.44192 7.61270 8.96085

10�10� 2 2.61320 4.98420 4.98420 6.98593 8.23134

10�10� 3 2.61069 4.97654 4.97654 6.97266 8.21368

11�11� 3 2.60914 4.97440 4.97440 6.96982 8.21051

12�12� 4 2.60503 4.96303 4.96303 6.95161 8.18719
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Table 6

Convergence of flexural vibration frequency parameters ō of square 1-8-1 power-law FGM plates of Type B with k ¼ 10 ðh=b ¼ 0:01; 0:1Þ

h=b Terms ō1 ō2 ō3 ō4 ō5

0.01 Simply supported

10�10� 1 1.72383 4.30750 4.30750 6.88871 8.60815

10�10� 2 1.55756 3.89229 3.89229 6.22508 7.77922

10�10� 3 1.55755 3.89220 3.89220 6.22485 7.77886

11�11� 2 1.55756 3.89229 3.89229 6.22508 7.77922

12�12� 3 1.55755 3.89220 3.89220 6.22485 7.77885

Clamped

10�10� 1 3.14039 6.39988 6.39988 9.42913 11.46067

10�10� 2 2.85474 5.81414 5.81414 8.56560 10.42242

10�10� 3 2.85464 5.81379 5.81379 8.56490 10.42141

11�11� 2 2.85000 5.81210 5.81210 8.56534 10.40363

12�12� 3 2.84983 5.80565 5.80565 8.55342 10.40233

0.1 Simply supported

10�10� 1 1.67228 4.00978 4.00978 6.17880 7.54643

10�10� 2 1.51706 3.65652 3.65652 5.65925 6.92978

10�10� 3 1.51576 3.64938 3.64938 5.64295 6.90604

11�11� 3 1.51576 3.64938 3.64938 5.64295 6.90604

12�12� 4 1.51523 3.64651 3.64651 5.63646 6.89665

Clamped

10�10� 1 2.87593 5.52262 5.52262 7.76954 9.18391

10�10� 2 2.64451 5.10939 5.10939 7.21810 8.55574

10�10� 3 2.63661 5.08632 5.08632 7.17872 8.50223

11�11� 3 2.63515 5.08405 5.08405 7.17553 8.49926

12�12� 4 2.63156 5.07426 5.07426 7.15975 8.47828

Table 7

Comparisons of fundamental frequency parameters o� ¼ oa2= 2pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of a simply supported isotropic rectangular plates with other

theories ðb ¼ 2aÞ

h=b 0.005 0.01 0.02 0.1 0.2

CPT 1.96339 1.96309 1.96188 1.92433 1.81954

FSDT 1.96305 1.96171 1.95639 1.80958 1.51101

N ¼ 1 1.96311 1.96196 1.95727 1.82785 1.56003

TSDT 1.96305 1.96171 1.95639 1.80974 1.51230

SSDT 1.96305 1.96171 1.95640 1.80993 1.51294

N ¼ 2 1.96305 1.96178 1.95662 1.81524 1.53201

DQM 1.96299 1.96179 1.95667 1.81513 1.53118

N ¼ 3 1.96305 1.96178 1.95662 1.81513 1.53112
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4.2. Verification

The numerical results of simply supported rectangular isotropic plates and power-law FGM plates are
verified in this subsection.

The numerical results of frequency parameters of the first flexural mode of simply supported rectangular
isotropic plates are compared with the results of CPT, FSDT, TSDT, SSDT, and differential quadrature
method (DQM) [30] in Table 7. For flexural vibration, only the antisymmetric terms (i ¼ 2; 4; 6; . . . in Eq. (7))
are needed along the thickness direction z in the expansions of u1 and u2. N denotes the number of the
antisymmetric terms of u1 and u2 in the thickness directions. For thin plates, the present approach almost gives
the identical results as other approaches.
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Table 8

Comparisons of natural fundamental frequency parameters ō of simply supported square power-law FGM plates of Type A with other

theories ðh=b ¼ 0:1Þ

k Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0.5 CPT 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722

FSDT 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274

TSDT 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451

SSDT 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450

Present 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668

1 CPT 1.26238 1.32023 1.37150 1.37521 1.43247 1.46497

FSDT 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722

TSDT 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934

SSDT 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931

Present 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137

5 CPT 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867

FSDT 0.94256 0.97870 1.07156 1.04183 1.14467 1.17159

TSDT 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397

SSDT 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399

Present 0.94476 0.98103 1.02942 1.04532 1.10983 1.17567

10 CPT 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614

FSDT 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067

TSDT 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314

SSDT 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460

Present 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466
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For thick plates, the 2-D theories cannot provide the results as accurate as 3-D approaches (present
approach and DQM) because 3-D approaches do not rely on any hypothesis compared with 2-D theories. The
results of the present approach are close to the solutions of DQM which are numerical solutions of the 3-D
governing partial differential equations. It should be noted that the results of N ¼ 1 were close to the solutions
of FSDT.

The results of the power-law FGM sandwich plates of Type A with six material distributions are compared
in Table 8 with the results based on CPT, FSDT, TSDT, SSDT. Young’s modulus E and mass density r are
based on the power-law distribution, Eq. (4). Table 8 shows a good agreement by comparisons of FGM plates
of four different volume fraction indices k ¼ 0:5; 1; 5; 10 with other theories.
5. Results and discussion

Based on the procedures and analyses of foregoing sections, the two types of square power-law FGM plates
with four simply supported edges and four clamped edges are investigated. In the succedent computation,
10� 10� 3 terms of admissible functions for each displacement function are used. Six-layer thickness ratios
(1-0-1, 2-1-2, 1-1-1, 2-2-1, 1-2-1, 1-8-1) are selected for the analysis. Tables 9–14 give the fundamental
frequency parameters ō of these selected plates.

The numerical results of simply supported and clamped square power-law FGM plates of Type A are
tabulated in Tables 9–12. Tables 9 and 10 consider the case of homogeneous hardcore in which the Young’s
modulus and mass density of layer 1 are Ec ¼ 380GPa and rc ¼ 3800 kg=m3 (P1, alumina) at the top face and
Em ¼ 70GPa and rm ¼ 2707 kg=m3 (P2, aluminum) at the bottom face. Tables 11 and 12 consider the case of
homogeneous softcore in which the Young’s modulus and mass density of layer 1 are Em ¼ 70GPa and
rm ¼ 2707 kg=m3 (P1, aluminum) at the top face and Ec ¼ 380GPa and rc ¼ 3800 kg=m3 (P2, alumina) at the
bottom face. Three thickness-side ratios h=b (0.01, 0.1, 0.2) and five volume fraction indices kð0; 0:5; 1; 5; 10Þ
are considered.
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Table 9

Fundamental frequency parameters ō of simply supported square power-law FGM sandwich plates with homogeneous hardcore

h=b k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

0.01 0 1.88829 1.88829 1.88829 1.88829 1.88829 1.88829

0.5 1.48244 1.52355 1.56046 1.59031 1.61915 1.76357

1 1.27158 1.32974 1.38511 1.42992 1.47558 1.69906

5 0.96563 0.99903 1.06309 1.13020 1.19699 1.56988

10 0.95042 0.95934 1.01237 1.08065 1.14408 1.54164

0.1 0 1.82682 1.82682 1.82682 1.82682 1.82682 1.82682

0.5 1.44614 1.48608 1.52131 1.54926 1.57668 1.71130

1 1.24470 1.30181 1.35523 1.39763 1.44137 1.65113

5 0.94476 0.98103 1.04532 1.10983 1.17567 1.52993

10 0.92727 0.94078 0.99523 1.06104 1.12466 1.50333

0.2 0 1.67711 1.67711 1.67711 1.67711 1.67711 1.67711

0.5 1.35358 1.39053 1.42178 1.44535 1.46940 1.58186

1 1.17485 1.22915 1.27770 1.31434 1.35341 1.53142

5 0.89086 0.93362 0.99798 1.05607 1.11900 1.42845

10 0.86833 0.89228 0.94984 1.00949 1.07290 1.40568

Table 10

Fundamental frequency parameters ō of clamped square power-law FGM sandwich plates with homogeneous hardcore

h=b k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

0.01 0 3.45447 3.45447 3.45447 3.45447 3.45447 3.45447

0.5 2.71263 2.78786 2.85535 2.90993 2.96675 3.23192

1 2.32703 2.43347 2.53476 2.61669 2.71273 3.11384

5 1.76711 1.82843 1.94575 2.06851 2.25938 2.87731

10 1.73916 1.75573 1.85287 1.97781 2.09743 2.82561

0.1 0 3.13799 3.13799 3.13799 3.13799 3.13799 3.13799

0.5 2.52593 2.59490 2.65356 2.69828 2.74989 2.95839

1 2.19019 2.29107 2.38186 2.45108 2.53978 2.86255

5 1.66187 1.73925 1.85790 1.96719 2.15715 2.66739

10 1.62117 1.66326 1.76860 1.88080 1.99860 2.62431

0.2 0 2.57552 2.57552 2.57552 2.57552 2.57552 2.57552

0.5 2.15683 2.21438 2.25866 2.28822 2.33060 2.46042

1 1.90590 1.99492 2.06686 2.11525 2.19019 2.39709

5 1.44469 1.54542 1.66225 1.74700 1.93215 2.26481

10 1.38683 1.46709 1.58209 1.67158 1.78269 2.23526
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Tables 13 and 14 give the results of 1-8-1 power-law FGM plate of Type B. P1 is referred to the properties
of aluminum and P2 the properties of alumina. In this case, the FGM core is metal-rich at the top face and
ceramic-rich at the bottom face. Three thickness-side ratios h=b (0.01, 0.1, 0.2) and five volume fraction indices
k (0.5, 1, 2, 5, 10) are considered.

It is shown that for both simply supported and clamped plates, the natural fundamental frequencies
decrease with the decrease of the material rigidity, which is due to the increase of k for Type A or the decrease
of k for Type B and the variation of the layer thickness ratios. Moreover, the thin plates are slightly more
sensitive than the thick plate to material rigidity, i.e. k, and this effect is a little greater for simply supported
plates as compared with clamped plates.

Fig. 3 depicts the fundamental frequencies parameters versus the thickness-side ratios of simply supported
power-law FGM sandwich plates with homogeneous hardcore. The bottom and top curves are the cases of



ARTICLE IN PRESS

Table 11

Fundamental frequency parameters ō of simply supported square power-law FGM sandwich plates with homogeneous softcore

h=b k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

0.01 0 0.96022 0.96022 0.96022 0.96022 0.96022 0.96022

0.5 1.66281 1.62291 1.58171 1.52277 1.50658 1.26557

1 1.82031 1.79163 1.75379 1.68184 1.67490 1.38331

5 1.92090 1.94313 1.93623 1.86207 1.88530 1.57035

10 1.91064 1.94687 1.95044 1.88042 1.91162 1.60457

0.1 0 0.92897 0.92897 0.92897 0.92897 0.92897 0.92897

0.5 1.57352 1.52588 1.48459 1.43419 1.41662 1.20553

1 1.72227 1.67437 1.63053 1.57037 1.55788 1.30825

5 1.84198 1.82611 1.78956 1.72726 1.72670 1.46647

10 1.84020 1.83987 1.80813 1.74779 1.74811 1.49481

0.2 0 0.85286 0.85286 0.85286 0.85286 0.85286 0.85286

0.5 1.37894 1.32061 1.28053 1.24533 1.22580 1.07016

1 1.50896 1.43325 1.38242 1.34203 1.32129 1.14451

5 1.65868 1.58011 1.50284 1.46009 1.42665 1.25210

10 1.67278 1.60909 1.52671 1.48306 1.44101 1.27065

Table 12

Fundamental frequency parameters ō of clamped square power-law FGM sandwich plates with homogeneous softcore

h=b k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1

0.01 0 1.75955 1.75955 1.75955 1.75955 1.75955 1.75955

0.5 3.04486 2.97115 2.89556 2.78801 2.75819 2.31796

1 3.33323 3.27936 3.20956 3.07834 3.06523 2.53302

5 3.51895 3.55732 3.54268 3.40745 3.44842 2.87430

10 3.50064 3.56482 3.56905 3.44126 3.49638 2.93670

0.1 0 1.59667 1.59667 1.59667 1.59667 1.59667 1.59667

0.5 2.59854 2.49325 2.41822 2.34967 2.31267 2.01124

1 2.84447 2.71205 2.61914 2.53960 2.50113 2.15476

5 3.11435 2.98733 2.85602 2.77151 2.71561 2.36494

10 3.13632 3.03681 2.89948 2.81400 2.74524 2.40157

0.2 0 1.31009 1.31009 1.31009 1.31009 1.31009 1.31009

0.5 1.97334 1.85983 1.79320 1.75870 1.71847 1.55058

1 2.16230 1.99824 1.90331 1.86427 1.81125 1.62189

5 2.47224 2.24288 2.06578 2.02006 1.91607 1.71750

10 2.52896 2.31381 2.11413 2.06384 1.93580 1.73394

Table 13

Fundamental frequency parameters ō of simply supported square 1-8-1 power-law FGM sandwich plates with FGM core

h=b k

0.5 1 2 5 10

0.01 1.33931 1.38669 1.44491 1.53143 1.59105

0.1 1.29751 1.34847 1.40828 1.49309 1.54980

0.2 1.19580 1.25338 1.31569 1.39567 1.44540
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Fig. 3. Fundamental frequencies ō for power-law FGM sandwich plates with homogeneous hardcore and four simply supported edges:

(a) 1-0-1 P-FGM sandwich plate, (b) 1-8-1 P-FGM sandwich plate.

Table 14

Fundamental frequency parameters ō of clamped square 1-8-1 power-law FGM sandwich plates with FGM core

h=b k

0.5 1 2 5 10

0.01 2.45438 2.54149 2.64835 2.80692 2.91611

0.1 2.24154 2.34606 2.45973 2.60760 2.70070

0.2 1.86081 1.97993 2.09554 2.22142 2.28896
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metal ðk ¼ þ1Þ and ceramic ðk ¼ 0Þ plates, respectively. Fig. 4 depicts the curves of the power-law FGM
sandwich plates with homogeneous softcore. The bottom and top curves are the cases of metal ðk ¼ 0Þ and
ceramic ðk ¼ þ1Þ plates, respectively.

It is seen that the frequencies increase with the increasing amount of ceramic in the sandwich plate. It is also
shown that the effect of k on 1-0-1 sandwich plate which is without the homogeneous core layer is greater than
that of 1-8-1 sandwich with homogeneous hardcore, and the effect of k on the sandwich with homogeneous
hardcore is greater than that with homogeneous softcore.

Figs. 5 and 6 display the relative displacements along the thickness direction of the first six modes, which
can be classified into two groups: flexural modes (F) and extensional modes (TE). The plate is of simply
supported square 2-1-2 power-law FGM with k ¼ 10 and h=b ¼ 0:2. These curves are the amplitudes of u1, u2,
and u3 of the lines ðx ¼ 0; Z ¼ 0Þ and ðx ¼ 0:5; Z ¼ 0:5Þ.

For the flexural modes (F) as shown, the displacement U3 is not uniform which implied that there is normal
stress existing in the thickness direction. For F2 and F3 modes, the deflected plate retains the same thickness at
ðx ¼ 0; Z ¼ 0Þ, however, the thickness is compressed at other positions such as ðx ¼ 0:5; Z ¼ 0:5Þ with a
decreasing slope of the originally normal lines. It also shows that the deformed lines, u1 and u2 across the
thickness of the plate are not simply linear. In fact, in the process of computation, the displacement amplitude
functions U1 and U2 are resembled by not only the constant and linear terms of the polynomials but also the
higher-order terms. For the extensional modes (TE), the whole deflected plate retains the same thickness but
the displacement components u1 and u2 are symmetrical about the mid-plane, i.e. shown in Figs. 5(d) and (e).
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Fig. 4. Fundamental frequencies ō for power-law FGM sandwich plates with homogeneous softcore and four simply supported edges:

(a) 1-0-1 P-FGM sandwich plate, (b) 1-8-1 P-FGM sandwich plate.
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6. Conclusion

Three-dimensional vibration analysis of rectangular FGM sandwich plates has been carried out based on
the linear, small strain 3-D elasticity theory via Ritz method. The present approach can provide accurate
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solutions for thick plates because the three displacements of the plate are expanded by the triplicate
summations of Chebyshev polynomials which can give better approximation to the variation of displacements
in the thickness direction than the approximate 2-D plate theories. The power-law FGM sandwich plates with
FGM facesheet and homogeneous core and the sandwich plates with homogeneous facesheet and FGM core
are considered. The accuracy of the present approach is also validated by comparing the numerical results of
isotropic and six types of power-law FGM sandwich plates with other theories. The convergence study reveals
that the number of thickness expansion terms mainly depend on the thickness of the plate, and the length and
width sides expansions mainly on the supported conditions. Moreover, the convergence rate is independent of
k value except for the unsymmetric distribution of material properties and very thick plates with clamped
edges. Parametric study for layer thickness ratios, volume fraction indices, thickness-side and aspect ratios
shows that the thin plates are slightly more sensitive to the material properties than the thick plates.
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Appendix A. Chebyshev polynomials

The Chebyshev polynomials of first 11 orders are listed below for reference:

P1ðxÞ ¼ 1, (A.1a)

P2ðxÞ ¼ x, (A.1b)

P3ðxÞ ¼ 2x2 � 1, (A.1c)

P4ðxÞ ¼ 4x3 � 3x, (A.1d)
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P5ðxÞ ¼ 8x4 � 8x2 þ 1, (A.1e)

P6ðxÞ ¼ 16x5 � 20x3 þ 5x, (A.1f)

P7ðxÞ ¼ 32x6 � 48x4 þ 18x2 � 1, (A.1g)

P8ðxÞ ¼ 64x7 � 112x5 þ 56x3 � 7x, (A.1h)

P9ðxÞ ¼ 128x8 � 256x6 þ 160x4 � 32x2 þ 1, (A.1i)

P10ðxÞ ¼ 256x9 � 576x7 þ 432x5 � 120x3 þ 9x, (A.1j)

P11ðxÞ ¼ 512x10 � 1280x8 þ 1120x6 � 400x4 þ 50x2 � 1. (A.1k)

..

.

Appendix B. Elements of submatrices

The elements of the nominal stiffness submatrices K and mass submatrices M are listed below:

K11 ¼ p1p2

bh

a
K1;1

x;u1iu1 ī
K0;0

Z;u1ju1 j̄
E0;0

z;kk̄
þ p1

bh

a
K1;1

x;u1iu1 ī
K0;0

Z;u1ju1 j̄
E0;0

z;kk̄

þ p1

ah

2b
K0;0

x;u1iu1 ī
K1;1

Z;u1ju1 j̄
E0;0

z;kk̄
þ p1

ab

2h
K0;0

x;u1iu1 ī
K0;0

Z;u1ju1 j̄
E1;1

z;kk̄
, ðB:1aÞ

K12 ¼ p1p2hK1;0
x;u1iu2lK

0;1
Z;u1ju2mE0;0

z;kn þ p1

h

2
K0;1

x;u1iu2lK
1;0
Z;u1ju2mE0;0

z;kn, (B.1b)

K13 ¼ p1p2bK1;0
x;u1iu3pK0;0

Z;u1ju3qE0;1
z;kr þ p1

b

2
K0;1

x;u1iu3pK0;0
Z;u1ju3qE1;0

z;kr, (B.1c)

K22 ¼ p1p2

ah

b
K0;0

x;u2lu2 l̄
K1;1

Z;u2mu2m̄E0;0
z;nn̄ þ p1

ah

b
K0;0

x;u2lu2 l̄
K1;1

Z;u2mu2m̄E0;0
z;nn̄

þ p1

bh

2a
K1;1

x;u2lu2 l̄
K0;0

Z;u2mu2m̄E0;0
z;nn̄ þ p1

ab

2h
K0;0

x;u2lu2 l̄
K0;0

Z;u2mu2m̄E1;1
z;nn̄, ðB:1dÞ

K23 ¼ p1p2aK0;0
x;u2lu3pK1;0

Z;u2mu3qE0;1
z;nr þ p1

a

2
K0;0

x;u2lu3pK0;1
Z;u2mu3qE1;0

z;nr, (B.1e)

K33 ¼ p1p2

ab

h
K0;0

x;u3pu3 p̄K0;0
Z;u3qu3 q̄E1;1

z;rr̄ þ p1

ab

h
K0;0

x;u3pu3 p̄K0;0
Z;u3qu3 q̄E1;1

z;rr̄

þ p1

bh

2a
K1;1

x;u3pu3p̄K0;0
Z;u3qu3 q̄E0;0

z;rr̄ þ p1

ah

2b
K0;0

x;u3pu3p̄K1;1
Z;u3qu3 q̄E0;0

z;rr̄, ðB:1fÞ

M11 ¼
abh

8
K0;0

x;u1iu1 ī
K0;0

Z;u1ju1 j̄
Mz;kk̄, (B.2a)

M22 ¼
abh

8
K0;0

x;u2lu2 l̄
K0;0

Z;u2mu2m̄Mz;nn̄, (B.2b)

M33 ¼
abh

8
K0;0

x;u3pu3 p̄K0;0
Z;u3qu3q̄Mz;rr̄, (B.2c)

where p1 ¼ 1=½2ð1þ nÞ�, p2 ¼ n=ð1� 2nÞ are the constants related to Poisson’s ratio.
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For the describable convenience, the operators Kx, KZ, Ez and Mz are used in above equations and they are
defined as

Ks;s̄
x;sjs̄j̄ ¼

Z 1

�1

ds
½f ð1Þs ðxÞPjðxÞ�

dxs �
ds̄
½f
ð1Þ
s̄ ðxÞPj̄ðxÞ�

dxs̄
dx, (B.3a)

Ks;s̄
Z;sjs̄j̄ ¼

Z 1

�1

ds
½f ð2Þs ðZÞPjðZÞ�

dZs
�
ds̄
½f
ð2Þ
s̄ ðZÞPj̄ðZÞ�
dZs̄

dZ, (B.3b)

Es;s̄
z;jj̄ ¼

XNL

i¼1

Z ziþ1

zi

EiðzÞ �
dsPjðzÞ
dzs �

ds̄Pj̄ðzÞ

dzs̄
dz, (B.3c)

Mz;jj̄ ¼
XNL

i¼1

Z ziþ1

zi

riðzÞ � PjðzÞPj̄ðzÞdz, (B.3d)

where

s; s̄ ¼ 0; 1,

s; s̄ ¼ u1; u2; u3,

j; j̄ ¼ i; ī; j; j̄; k; k̄; l; l̄;m; m̄; n; n̄; p; p̄; q; q̄; r; r̄. (B.4)

NL is the number of layers; EiðzÞ in Eq. (B.3c) and riðzÞ in Eq. (B.3d) are the thickness-graded Young’s
modulus and mass density of the FGM plate.
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